
Notes on falling / rising head test
analysis

1.1 Inflows

A shape factor ‘F ’ can be used to described geometry into which groundwater flows, such that
discharge‘Q’ is given by:

Q = F kH (1.1.1)

Where k is the hydraulic conductivity of the formation and H is the head differential.

A shape factor for wells, such as the well shown in Figure 1.1 is presented in Hvorslev (1951) as:
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Where R is the outside radius of the drill hole (ie outside of any gravel pack etc).

As such, the discharge into the well in Figure 1.1 can be estimated, and it can be seen that discharge
is linearly related to the head ‘H ’ (the water level in the well remains above the screen, so the screen
length and shape factor are constant).

It should be noted that there is no drawdown curve in Figure 1.1 - this situation represents an instant-
aneous pertubation to the level in the well - there has been no time to develop a drawdown curve.
This situation reflects a ‘slug’ test (aka a falling or rising head test) - ie where water (or air) is used
to suddenly displace water in the well and, through monitoring its recovery, an estimation of the
hydraulic conductivity ’‘k’ can be made, as described below.
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Figure 1.1 Flow into a well after sudden change in standiing water level

1.2 Analysis

Considering Figure 1.1, at time ‘t ’ the discharge ‘Qt ’ can be expressed as:

Qt dt =−A dH (1.2.1)

With substitution of Equation 1.1.1:

F kHt dt =−A dH (1.2.2)

Consider the change in water level between two times t1 and t2. Equation 1.2.2 can be arranged and
integrated as:

∫ t2

t1

F k

A
dt =−

∫ H2

H1

1

H
dH (1.2.3)

Giving:
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Given the measurement of time elapsed between two well levels H1 and H2, an estimation of ‘k’ can
be made using Equation 1.2.4.

In practice, the recovery of water levels in the well are continuously monitored with a logger, and can
be plotted as per Figure 1.2, where the y-axis is Ht

H0
and the x-axis is time. When plotted in this way, and

with a y-axis as a logarithm, the observations should form a straight line. A line through the points, as
shown, can be used to select a t1 and t2 and corresponding H1 and H2 which appropriately characterise
the line and, substitution of these values into Equation 1.2.4 yields an estimation of k.

Ht
H0

0 5 10 15 20 25

0.01

0.1

1

Time (minutes)

t 1
=3

m
in

s

t 2
=1

6
m

in
s

Fitted line

Observations

H1/H0 = 0.3

H2/H0 = 0.01

Figure 1.2 Example 1 of test data and interpretation

From Figure 1.2, substitution of the values for t1 = 3 minutes (180 seconds) and t2 = 16 minutes (960
seconds) and corresponding H1/H0 = 0.3 and H2/H0 = 0.01 into Equation 1.2.4 gives:

k = 0.002

4.3(960−180)
ln

(
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)
=2×10−6 m.s−1

Steven Pells 3 of 5



Notes on falling / rising head test analysis

1.2.1 The Hvorslev 1951 ‘time-lag’ solution

Hvorslev (1951) would not have had access to modern calculators, and perhaps sought to simplify
the solution. Noting that ln

( 1
0.37

)≈ 1, Hvorslev (1951) defined a time-lag ‘T ’, being the time taken for
water level to move from its position H0 at time t = 0 to a position HT , where HT = 0.37H0 (i.e head
has recovered 37%). Substitution of these conditions into Equation 1.2.4 gives:
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Noting A =πr 2 (r is the inside diameter of the well), and using the shape factor from Equation 1.1.3
gives:
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The Hvorslev solution (Equation 1.2.7) is numerically simpler, but has the disadvantage that it forces
the solution to fit to the early part of the curve - being the first 37% of recovery (ie between time t = 0
and time t when H = 0.37H0). In many tests (eg Figure 1.3) this doesn’t raise a problem. However, in
some test conditions, the early part of the curve can be effected by initial flow through the gravel pack
and the ‘time-lag’ solution, being fitted to this part of the curve, does not give an estimate of k for the
formation. An example of such a test result is shown in Figure 1.3.

Solutions to the test in Figure 1.3 using Hvorslev (Equation 1.2.7) and using Equation 1.2.4 presen-
ted below demonstrate how largely different estimates of k arise by fitting to different parts of the
curve.

From Figure 1.3, the Hvorslev (1951) ‘time-lag’ = 0.8 mins (48 seconds). From Equation ??:

k = 0.002

4.3 × 48
≈1×10−5 m.s−1 (1.2.8)

From Figure 1.3, substitution of the values for t1 = 0 minutes (0 seconds) and t2 = 10 minutes (600
seconds) and corresponding H1/H0 = 0.17 and H2/H0 = 0.0081 into Equation 1.2.4 gives:

k = 0.002

4.3(600−0)
ln

(
0.16H0

0.0083H0

)
≈2×10−6 m.s−1
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Figure 1.3 Example 2 of test data and interpretation
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